6 research outputs found

    Isoperimetric Inequalities on Hexagonal Grids

    Full text link
    We consider the edge- and vertex-isoperimetric probem on finite and infinite hexagonal grids: For a subset W of the hexagonal grid of given cardinality, we give a lower bound for the number of edges between W and its complement, and lower bounds for the number of vertices in the neighborhood of W and for the number of vertices in the boundary of W. For the infinite hexagonal grid the given bounds are tight

    Capturing Polynomial Time and Logarithmic Space using Modular Decompositions and Limited Recursion

    Get PDF
    Diese Arbeit leistet BeitrĂ€ge im Bereich der deskriptiven KomplexitĂ€tstheorie. ZunĂ€chst beschĂ€ftigen wir uns mit der ungelösten Frage, ob es eine Logik gibt, welche die Klasse der Polynomialzeit-Eigenschaften (PTIME) charakterisiert. Wir betrachten Graphklassen, die unter induzierten Teilgraphen abgeschlossen sind. Auf solchen Graphklassen lĂ€sst sich die 1976 von Gallai eingefĂŒhrte modulare Zerlegung anwenden. Graphen, die durch modulare Zerlegung nicht zerlegbar sind, heißen prim. Wir stellen ein neues Werkzeug vor: das Modulare Zerlegungstheorem. Es reduziert (definierbare) Kanonisierung einer Graphklasse C auf (definierbare) Kanonisierung der Klasse aller primen Graphen aus C, die mit binĂ€ren Relationen auf einer linear geordneten Menge gefĂ€rbt sind. Mit Hilfe des Modularen Zerlegungstheorems zeigen wir, dass Fixpunktlogik mit ZĂ€hlen (FP+C) PTIME auf der Klasse aller Permutationsgraphen und auf der Klasse aller chordalen KomparabilitĂ€tsgraphen charakterisiert. Wir beweisen zudem, dass modulare ZerlegungsbĂ€ume in Symmetrisch-Transitive-HĂŒllen-Logik mit ZĂ€hlen (STC+C) definierbar und damit in logarithmischem Platz berechenbar sind. Weiterhin definieren wir eine neue Logik fĂŒr die KomplexitĂ€tsklasse Logarithmischer Platz (LOGSPACE). Wir erweitern die Logik erster Stufe mit ZĂ€hlen um einen Operator, der eine in logarithmischem Platz berechenbare Form der Rekursion erlaubt. Die resultierende Logik LREC ist ausdrucksstĂ€rker als die Deterministisch-Transitive-HĂŒllen-Logik mit ZĂ€hlen (DTC+C) und echt in FP+C enthalten. Wir zeigen, dass LREC LOGSPACE auf gerichteten BĂ€umen charakterisiert. Zudem betrachten wir eine Erweiterung LREC= von LREC, die sich gegenĂŒber LREC durch bessere Abschlusseigenschaften auszeichnet und im Gegensatz zu LREC ausdrucksstĂ€rker als die Symmetrisch-Transitive-HĂŒllen-Logik (STC) ist. Wir beweisen, dass LREC= LOGSPACE sowohl auf der Klasse der Intervallgraphen als auch auf der Klasse der chordalen klauenfreien Graphen charakterisiert.This theses is making contributions to the field of descriptive complexity theory. First, we look at the main open problem in this area: the question of whether there exists a logic that captures polynomial time (PTIME). We consider classes of graphs that are closed under taking induced subgraphs. For such graph classes, an effective graph decomposition, called modular decomposition, was introduced by Gallai in 1976. The graphs that are non-decomposable with respect to modular decomposition are called prime. We present a tool, the Modular Decomposition Theorem, that reduces (definable) canonization of a graph class C to (definable) canonization of the class of prime graphs of C that are colored with binary relations on a linearly ordered set. By an application of the Modular Decomposition Theorem, we show that fixed-point logic with counting (FP+C) captures PTIME on the class of permutation graphs and the class of chordal comparability graphs. We also prove that the modular decomposition tree is definable in symmetric transitive closure logic with counting (STC+C), and therefore, computable in logarithmic space. Further, we introduce a new logic for the complexity class logarithmic space (LOGSPACE). We extend first-order logic with counting by a new operator that allows it to formalize a limited form of recursion which can be evaluated in logarithmic space. We prove that the resulting logic LREC is strictly more expressive than deterministic transitive closure logic with counting (DTC+C) and that it is strictly contained in FP+C. We show that LREC captures LOGSPACE on the class of directed trees. We also study an extension LREC= of LREC that has nicer closure properties and that, unlike LREC, is more expressive than symmetric transitive closure logic (STC). We prove that LREC= captures LOGSPACE on the class of interval graphs and on the class of chordal claw-free graphs

    L-Recursion and a new Logic for Logarithmic Space

    No full text
    We extend first-order logic with counting by a new operator that allows it to formalise a limited form of recursion which can be evaluated in logarithmic space. The resulting logic LREC has a data complexity in LOGSPACE, and it defines LOGSPACE-complete problems like deterministic reachability and Boolean formula evaluation. We prove that LREC is strictly more expressive than deterministic transitive closure logic with counting and incomparable in expressive power with symmetric transitive closure logic STC and transitive closure logic (with or without counting). LREC is strictly contained in fixed-point logic with counting FP+C. We also study an extension LREC = of LREC that has nicer closure properties and is more expressive than both LREC and STC, but is still contained in FP+C and has a data complexity in LOGSPACE. Our main results are that LREC captures LOGSPACE on the class of directed trees and that LREC = captures LOGSPACE on the class of interval graphs
    corecore